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Access Control: introduction

• Security = prevention and detection of 
unauthorized actions on information

• Two important cases:
– An attacker has access to the raw bits representing 

the information
=> need for cryptographic techniques

– There is a software layer between the attacker and 
the information
=> access control techniques



Secappdev 2007 4KATHOLIEKE
UNIVERSITEIT
LEUVEN

General access control model

Principal Action

G
uard

Protected 
system

Authentication Authorization
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Examples

…………
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Entity Authentication

• Definition
– Verifying the claimed identity of an entity (usually 

called principal) that the guard is interacting with
• Different cases need different solutions:

– Principal is a (human) user
– Principal is a (remote) computer
– Principal is a user working at a remote computer
– Principal is a user running a specific piece of code
– …

• See separate session on entity authentication
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Authorization by the Guard

• Guard can have local state
– “protection state”

• Upon receipt of an action
– Decides what to do with the action

• We only consider pass/drop
• Alternatives are: modify/replace, first insert other action,…

– If necessary: updates the local state
• Modeled by means of a “security automaton”

– Set of states described by a number of typed state variables
– Transition relation described by predicates on the action and 

the local state
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Guard
• Notation:

– Actions are written as procedure invocations
– Behavior of the guard is specified by:

• Declaration of state variables
– Determine the state space

• Implementations of the action procedures
– Preconditions determine acceptability of action
– Implementation body determines state update

• Example: no network send after file read
bool hasRead = false;
void send() requires  !hasRead {
  }
void read() {
  hasRead = true;
}
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Policies and models

• Access control policy = rules that say what is 
allowed and what not
– Semantics of a policy is a security automaton in a 

particular state
• Access control model = “A class of policies with 

similar characteristics”
– Hard to define precisely
– An access control model makes particular choices 

about what is in the protection state and how actions 
are treated
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Discretionary Access Control (DAC)
• Objective = creator-controlled sharing of information
• Key Concepts

– Principals are users
– Protected system manages objects, passive entities requiring 

controlled access
– Objects are accessed by means of operations on them
– Every object has an owner
– Owner can grant right to use operations to other users

• Variants:
– Possible to pass on ownership or not?
– Possible to delegate right to grant access or not?
– Constraints on revocation of rights.
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Security automaton for DAC
type Right = <User, Obj, {read, write}>;
Set<User> users = new Set();
Set<Obj> objects = new Set();
Set<Right> rights = new Set();  // represents the Access Control Matrix
Map<Obj,User> ownerOf = new Map(); 

// Access checks
void read(User u, Obj o) requires <u,o, read> in rights; {}   
void write(User u, Obj o) requires <u,o,write> in rights; {}

// Actions that impact the protection state
void addRight(User u, Right <u’,o,r>) 
  requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {
    rights[r] = true;
} 
void deleteRight(User u, Right <u’,o,r>)  
  requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {
    rights[r] = true;
} 
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Security automaton for DAC (ctd)
void addObject(User u, Obj o) 
  requires (u in users) &&  (o notin objects); {
    objects[o] = true;
    ownerOf[o] = u;
}       
void delObject(User u, Obj o) 
  requires (o in objects) && (ownerOf[o] == u); {
    objects[o] = false;
    ownerOf[o] = none; 
    rights = rights \ { <u’,o’,r’> in rights where o’==o};
} 

// Administrative functions
void addUser(User u, User u’) requires u’ notin users; {
   users[u’] = true;
} 



Secappdev 2007 14KATHOLIEKE
UNIVERSITEIT
LEUVEN

DAC

• Disadvantages:
– Cumbersome administration

• E.g user leaving the company or user being promoted to 
another function in the company

– Not so secure:
• Social engineering
• Trojan horse problem
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DAC Extensions

• Structuring users:
– Groups
– Negative permissions
– But: insufficient to make administration much easier

• Structuring operations:
– “access modes”: observe / alter / …
– Procedures: business procedure involving many 

operations on many objects
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Implementation structures

• DAC is typically not implemented with a 
centralized protection state

• Typical implementation structures include:
– Access Control List: e.g. ACL’s in Windows 2000
– Capabilities: e.g. Open file handles in Unix
– ...
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Mandatory Access Control (MAC)

• Objective = strict control of information flow
• Concrete example MAC model: Lattice Based 

Access Control (LBAC)
• Objective =

– A lattice of security labels is given
– Objects and users are tagged with security labels
– Enforce that:

• Users can only see information below their clearance
• Information can only flow upward, even in the presence of 

Trojan Horses
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Example lattices
Top secret

Secret

Confidential

Unclassified Unclassified

Confidential
Project A

Confidential
Project B

Confidential
Project A & B
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Typical construction of lattice

• Security label = (level, compartment)
• Compartment = set of categories
• Category = keyword relating to a project or area 

of interest
• Levels are ordered linearly 

– E.g. Top Secret – Secret – Confidential – 
Unclassified

• Compartments are ordered by subset inclusion
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Example lattice

(C,{})

(C,{A}) (C,{B})

(C,{A,B})

(S,{})

(S,{A}) (S,{B})

(S,{A,B})
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LBAC

• Key concepts of the model:
– Users initiate subjects or sessions, and these are 

labeled on creation
– Users of clearance L can start subjects with any 

label L’ ≤ L
– Enforced rules:

• Simple security property: subjects with label L can only 
read objects with label L’ ≤ L (no read up)

• *-property: subjects with label L can only write objects with 
label L’ ≥ L (no write down)

– The *-property addresses the Trojan Horse problem
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LBAC and the Trojan Horse problem

File F

File F’

S1

S2

Secret level

Confidential level

read

no write

write

no read
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Security automaton for LBAC
// Stable part of the protection state
Set<User> users; 
Map<User,Label> ulabel; // label of users

//Dynamic part of the protection state
Set<Obj> objects = new Set();  
Set<Session> sessions = new Set();
Map<Session, Label> slabel = new Map(); // label of sessions
Map<Obj,Label> olabel = new Map(); // label of objects

// No read up  
void read(Session s, Obj o) 
   requires s in sessions && o in objects && slabel[s] >= olabel[o]; {}   

// No write down
void write(Session s, Obj o) 
   requires s in sessions && o in objects && slabel[s] <= olabel[o]; {}
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Security automaton for LBAC (ctd)

// Managing sessions and objects
void createSession(User u, Label l) 
  requires (u in users) && ulabel[u] >= l ; {
    s = new Session();
    sessions[s] = true; 
    slabel[s] = l;
} 

void addObject(Session s, Obj o, Label l) 
  requires (s in sessions) &&  (o notin objects) && slabel[s] <= l; {
  objects[o] = true;
  olabel[o] = l;
} 
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LBAC

• Problems and disadvantages
– Too rigid => need for “trusted subjects”
– Not well suited for commercial environments
– Covert channel problems
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Role-Based Access Control (RBAC)

• Main objective: manageable access control
• Key concepts of the model:

– Role:
• many-to-many relation between users and permissions
• Corresponds to a well-defined job or responsibility
• Think of it as a named set of permissions that can be 

assigned to users
– When a user starts a session, he can activate some 

or all of his roles
– A session has all the permissions associated with 

the activated roles
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Security automaton for RBAC
// stable part of the protection state
Set<User> users;  
Set<Role> roles;
Set<Permission> perms;
Map<User, Set<Role>> ua; // set of roles assigned to each user
Map<Role, Set<Permission>> pa; // permissions assigned to each role

// dynamic part of the protection state
Set<Session> sessions;
Map<Session,Set<Role>> session_roles;
Map<User,Set<Session>> user_sessions;
  
// access check
void checkAccess(Session s, Permission p) 
   requires s in sessions && Exists{ r in session_roles[s]; p in pa[r]}; {
}   
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Security automaton for RBAC (ctd)

void createSession(User u, Set<Role> rs) 
  requires (u in users) && rs < ua[u]; {
    Session s = new Session();
    sessions[s] = true; 
    session_roles[s] = rs;
    user_sessions[u][s] = true;
} 

void dropRole(User u, Session s, Role r) 
  requires (u in users) && (s in user_sessions[u]) 

&& (r in session_roles[s]); {
  session_roles[s][r] = false;
} 



Secappdev 2007 31KATHOLIEKE
UNIVERSITEIT
LEUVEN

RBAC - Extensions

• Hierarchical roles: senior role inherits all 
permissions from junior role

Engineering Dept.

Project A Eng Project B Eng

Director of Eng Dept
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RBAC - Extensions

• Constraints:
– Static constraints

• Constraints on the assignment of users to roles
• E.g. Static separation of duty: nobody can both:

– Order goods
– Approve payment

– Dynamic constraints
• Constraints on the simultaneous activation of roles
• E.g. to enforce least privilege
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RBAC in practice

• Implemented in databases or into specific 
applications

• Can be “simulated” in operating systems using 
the group concept

• Implemented in a generic way in application 
servers
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Other Access Control Models

• Biba model: enforcing integrity by information 
flow

• Chinese wall model: dynamic access control 
model
– “A consultant can only see company confidential 

information of one company in each potential-
conflict-of-interest class”

• Theoretical models to study theoretical limits of 
security decision problems

• …
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Implementing Access Control in 
Applications

• Basically three options
1. Delegate to OS
2. Rely on middleware / application server
3. Roll your own

• For (1), it is useful to know the access control 
system of the OS

• For (2), see later session
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Approach #1: delegate to the OS

• All modern operating system have a built-in 
access control system, usually DAC based.

• If application resources can be mapped to OS 
resources, the OS access control can be reused

Resources

Operating System

Application
User command

Access check
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Approach #2: application servers

• Application server intercepts commands and 
performs access check

• E.g. J2EE and COM+, typically simple RBAC

Resources

Operating System

ApplicationUser command

Access check

Application server
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Approach #3: in the application

• Application performs explicit checks in the 
application code

• It makes sense to externalize at least the policy 
to an authorization engine

Resources

Operating System

Application
User command

Access checks
crosscut application

Authorization
Engine

Policy
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OS Access Control

• In the rest of this session:
– Helicopter overview of the Windows security 

architecture
– Access control system in Windows 2000/XP
– A brief look at Windows Vista’s implementation of the 

Biba Model.
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Windows 2000/XP Access Control

• Principals are users or machines
– Identified by Security Identifiers (SID)’s

• E.g. S-1-5-21-XXX-XXX-XXX-1001
• Hierarchical and globally unique

• Authorities manage principals and their 
credentials
– Local Security Authority on each PC
– Domain controller is authority for a domain

• Flexible mechanisms for slowly growing
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Windows 2000/XP Access Control

• Trust between authorities
– Machine that is part of a domain trusts the domain
– Domains can establish trust links

• Authentication
– Via local password check on a standalone machine

• Customizable via GINA
– Via Kerberos or NTLM on a machine that is part of a 

domain
• Customizable via SSPI
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Windows 2000/XP Access Control

• Successful authentication leads to the creation 
of a logon session
– Different types of logon sessions, e.g.

• Interactive logon session, for a user that logs on locally
• Network logon session, for a user that logs on remotely
• Service logon session, for a service running as a given 

user
– Logon session gets an access token that contains all 

authorization attributes for the user
• Processes and threads created in the logon 

session by default inherit the access token
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Machines and logon sessions

Machine A

System LS

Alice’s interactive LS

Bob’s network LS

Alice

…

Machine B

System LS

Bob’s interactive LS

Service LS

Bob

…
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Windows 2000/XP Access Control

• Securable objects include: 
– files, devices, registry keys, shared memory 

sections, …
• Every securable object carries a security 

descriptor, including a.o. an ACL.
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Windows 2000/XP Access tokens

• Contain:
– SID for the user
– SID’s for the groups a user belongs to

• Defined by the authority (typically domain)
• Should reflect organizational structure

– SID’s for the local groups (aliases) a user belongs to
• Defined locally
• Should reflect logical roles of applications on this machine

– Privileges of the user, e.g.
• Shutdown machine
• Take ownership privilege (e.g. for Administrators)
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Win 2000/XP security descriptors

• Contain:
– Owner SID
– (Primary group SID)
– DACL (Discretionary ACL): the ACL used for access 

control
– SACL (System ACL): ACL specifying what should be 

audited
• Created at object creation time from a default 

template attached to the creating process
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Windows 2000/XP DACL’s

• A DACL contains a sorted list of access control 
entries

• Each access control entry denies or grants 
specific access rights to a group or user

• Access control entries that deny access should 
be placed in front of the list

Deny
User x

Read/Write

Allow
Group g

Read/Write

Allow
Group Everyone

Read
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Windows 2000/XP access control

• The kernel performs access checks for each 
securable object by:
– Iterating over the access control entry in the DACL of 

the object 
– Each access control entry is matched to the access 

token of the accessing thread
– The first match decides (hence deny entries should 

be before allow entries!)
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Win 2000/XP access control

(Example from MSDN Library documentation)
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Caching mechanisms

• Extensive caching is used to boost performance
– Access token caches authorization attributes
– Once a file is opened, the file handle is used as a 

capability, and no further access checks occur
• Such a handle can be passed to other users

• Hence policy changes are not effective 
immediate if the affected user is currently logged 
on
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Access control in applications

• Impersonation:
– Server authenticates client, and puts access token 

on the thread servicing the request
• Role-based

– Look for a local group SID corresponding to a role in 
the client access token

– COM+ provides extensive support for this approach
• Object-based

– Use an API for managing ACL’s yourself
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Running Least Privilege

• The OS Access Control system can also be 
used to “sandbox” applications to protect 
against:
– Exploits of server programs
– Trojans / viruses / bugs in any application

• Writing software to run in low-privileged 
accounts requires attention to:
– What secured objects the application accesses
– What privileged API’s the application uses
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Win 2000/XP access control

• Summary:
– Access control based on:

• Discretionary ACL’s
• Privileges (safer than Unix root level access)

– Protected operations depend on the type of object
– Access control only performed during “opening” of an 

object. If access is granted, the opening process 
gets a capability for the requested access rights

– RBAC can be simulated using local groups, but:
• No sessions with limited activation of roles
• Permissions associated with a role are spread over ACL’s
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Windows Vista’s Integrity Protection

• Windows Vista adds a lattice-based access 
control model
– But used for integrity control (as the Biba model)

• Securable objects get an integrity level
–  representing how important their integrity is

• Access Tokens get an integrity level
– Representing how “contaminated” they are

• Three levels are distinguished:
– High (admin), medium (user), low (untrusted)
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Conclusion

• Most access control mechanisms implement the 
Lampson model
– Principal – Action –Guard – Protected system

• Three important categories of access control 
policy models each have their own area of 
applicability
– DAC in operating systems
– RBAC in applications and databases
– LBAC starting to find its use for integrity protection


