Research Group

Access control

Frank Piessens (Frank.Piessens@cs.kuleuven.be
)

mailto:Frank.Piessens@cs.kuleuven.be

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models
— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista
* Conclusion

Access Control: introduction

* Security = prevention and detection of
unauthorized actions on information

* Two important cases:

— An attacker has access to the raw bits representing
the information
=> need for cryptographic techniques

— There is a software layer between the attacker and
the information
=> access control techniques

General access control model

e Y

Authentication Authorization

Examples

Principal Action Guard Protected
system
Host Packet send |Firewall intranet
User Open file OS kernel File system
Java Open file Java Security | File
Program Manager
User Query DBMS Database
User Get page Web server | Web site

Entity Authentication

* Definition
— Verifying the claimed identity of an entity (usually
called principal) that the guard is interacting with

* Different cases need different solutions:
— Principal is a (human) user
— Principal is a (remote) computer
— Principal is a user working at a remote computer
— Principal is a user running a specific piece of code

* See separate session on entity authentication

Authorization by the Guard

* (Guard can have local state
— “protection state”

* Upon receipt of an action

— Decides what to do with the action
* We only consider pass/drop
* Alternatives are: modify/replace, first insert other action,...

— If necessary: updates the local state
* Modeled by means of a “security automaton”

— Set of states described by a number of typed state variables

— Transition relation described by predicates on the action and
the local state

Guard

* Notation:
— Actions are written as procedure invocations

— Behavior of the guard is specified by:
* Declaration of state variables
— Determine the state space

* Implementations of the action procedures
— Preconditions determine acceptability of action
— Implementation body determines state update

* Example: no network send after file read
bool hasRead = false; @, -
void send() requires 'hasRead { elely

}
void read() { el

hasRead = true;
Y

ead()

Policies and models

* Access control policy = rules that say what is
allowed and what not

— Semantics of a policy is a security automaton in a
particular state

* Access control model = “A class of policies with
similar characteristics”

— Hard to define precisely

— An access control model makes particular choices
about what is in the protection state and how actions
are treated

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models
— Discretionary Access Control (DAC)

— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista
* Conclusion

Discretionary Access Control (DAC)

* Objective = creator-controlled sharing of information
* Key Concepts

— Principals are users

— Protected system manages objects, passive entities requiring
controlled access

— Objects are accessed by means of operations on them
— Every object has an owner

— Owner can grant right to use operations to other users

* Variants:
— Possible to pass on ownership or not?
— Possible to delegate right to grant access or not?
— Constraints on revocation of rights.

Security automaton for DAC

type Right = <User, Obj, {read, write}>;

Set<User> users = new Set();

Set<Obj> objects = new Set();

Set<Right> rights = new Set(); // represents the Access Control Matrix
Map<Obj,User> ownerOf = new Map();

// Access checks
void read(User u, Obj o) requires <u,o, read> in rights; {}
void write(User u, Obj o) requires <u,o,write> in rights; {}

// Actions that impact the protection state
void addRight(User u, Right <u’,0,r>)
requires (u in users) && (U’ in users) && (0 in objects) && ownerOf[o] == u; {
rights[r] = true;
}
void deleteRight(User u, Right <u’,0,r>)
requires (u in users) && (U’ in users) && (o in objects) && ownerOf[o] == u; {
rights[r] = true;

Security automaton for DAC (ctd)

void addObject(User u, Obj 0)
requires (u in users) && (o notin objects); {
objects[o] = true;
ownerOffo] = u;
}
void delObject(User u, Obj 0)
requires (0 in objects) && (ownerOff[o] == u); {
objects[o] = false;
ownerOffo] = none;
rights = rights \ { <u’,0’,r’> in rights where 0’==0};

}

// Administrative functions
void addUser(User u, User u’) requires u’ notin users; {
users[u’] = true;

}

DAC

* Disadvantages:

— Cumbersome administration

* E.g user leaving the company or user being promoted to
another function in the company

— Not so secure:

* Social engineering
* Trojan horse problem

DAC Extensions

* Structuring users:

— Groups

— Negative permissions

— But: insufficient to make administration much easier
* Structuring operations:

— “access modes”: observe / alter / ...

— Procedures: business procedure involving many
operations on many objects

Implementation structures

* DAC is typically not implemented with a
centralized protection state

* Typical implementation structures include:
— Access Control List: e.g. ACL’s in Windows 2000
— Capabilities: e.g. Open file handles in Unix

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models

— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)

— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista
* Conclusion

Mandatory Access Control (MAC)

* Objective = strict control of information flow

* Concrete example MAC model: Lattice Based
Access Control (LBAC)

* Objective =
— A lattice of security labels is given

— Objects and users are tagged with security labels

— Enforce that:
* Users can only see information below their clearance

* Information can only flow upward, even in the presence of
Trojan Horses

Example lattices

Top secret
Confidential
Project A & B
Secret /\
, Confidential Confidential
Confidential Project A Project B

~_

Unclassified Unclassified

Typical construction of lattice

* Security label = (level, compartment)
* Compartment = set of categories

* Category = keyword relating to a project or area
of interest
* Levels are ordered linearly

— E.g. Top Secret — Secret — Confidential —
Unclassified

* Compartments are ordered by subset inclusion

Example lattice

(S,1A,B})

. %
({ii 2 (S,{A}) (S,{B})

(C,iA}) (C,iB}) (S,1})

~N

(C.11)

LBAC

* Key concepts of the model:

— Users Initiate subjects or sessions, and these are
abeled on creation

— Users of clearance L can start subjects with any
abelL'<L

— Enforced rules:

* Simple security property: subjects with label L can only
read objects with label L' < L (no read up)

* *-property: subjects with label L can only write objects with
label L' > L (no write down)

— The *-property addresses the Trojan Horse problem

LBAC and the Trojan Horse problem

read

File F

no write Secret level

no read Confidential level

File F’

write

Security automaton for LBAC

// Stable part of the protection state
Set<User> users;
Map<User,Label> ulabel; // label of users

//Dynamic part of the protection state

Set<Obj> objects = new Set();

Set<Session> sessions = new Set();

Map<Session, Label> slabel = new Map(); // label of sessions
Map<Obj,Label> olabel = new Map(); // label of objects

// No read up
void read(Session s, Obj 0)
requires s in sessions && 0 in objects && slabel[s] >= olabel[o]; {}

// No write down
void write(Session s, Obj 0)
requires s in sessions && 0 in objects && slabel[s] <= olabel[o]; {}

Security automaton for LBAC (ctd)

// Managing sessions and objects
void createSession(User u, Label I)
requires (u in users) && ulabel[u] >=1; {
S = new Session();
sessions[s] = true;
slabel[s] = |;

}

void addObject(Session s, Obj o, Label |)
requires (s in sessions) && (0 notin objects) && slabel[s] <=1; {
objects|o] = true;
olabel[o] = I;

}

LBAC

* Problems and disadvantages
— Too rigid => need for “trusted subjects”
— Not well suited for commercial environments
— Covert channel problems

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models

— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)

— Other Access Control Models
* Access Control in Windows 2000/XP/Vista

* Conclusion

Role-Based Access Control (RBAC)

* Main objective: manageable access control

* Key concepts of the model:

— Role:
* many-to-many relation between users and permissions
* Corresponds to a well-defined job or responsibility

* Think of it as a named set of permissions that can be
assigned to users

— When a user starts a session, he can activate some
or all of his roles

— A session has all the permissions associated with
the activated roles

Security automaton for RBAC

// stable part of the protection state

Set<User> users;

Set<Role> roles;

Set<Permission> perms;

Map<User, Set<Role>> ua; // set of roles assigned to each user
Map<Role, Set<Permission>> pa; // permissions assigned to each role

/I dynamic part of the protection state
Set<Session> sessions;
Map<Session,Set<Role>> session_roles;
Map<User,Set<Session>> user_sessions;

I/ access check
void checkAccess(Session s, Permission p)
requires s in sessions && Exists{ r in session_roles[s]; p in pa[r]}; {

}

Security automaton for RBAC (ctd)

void createSession(User u, Set<Role> rs)
requires (u in users) && rs < ualul; {
Session s = new Session();
sessions[s] = true;
session_roles[s] = rs;
user_sessions[u][s] = true;

}

void dropRole(User u, Session s, Role r)
requires (u in users) && (s in user_sessions[u])
&& (r in session_roles[s]); {
session_roles[s][r] = false;

}

RBAC - Extensions

* Hierarchical roles: senior role inherits all
permissions from junior role

Director of Eng Dept

T

Project A Eng Project B Eng

\/

Engineering Dept.

RBAC - Extensions

* Constraints:

— Static constraints
* Constraints on the assignment of users to roles

* E.g. Static separation of duty: nobody can both:
— Order goods
— Approve payment

— Dynamic constraints
* Constraints on the simultaneous activation of roles
* E.g. to enforce least privilege

RBAC in practice

* Implemented in databases or into specific
applications

* Can be “simulated” in operating systems using
the group concept

* Implemented in a generic way in application
servers

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models
— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista
* Conclusion

Other Access Control Models

* Biba model: enforcing integrity by information
flow

* Chinese wall model: dynamic access control
model
— “A consultant can only see company confidential

information of one company in each potential-
conflict-of-interest class’

* Theoretical models to study theoretical limits of
security decision problems

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models
— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista

* Conclusion

Implementing Access Control in
Applications
* Basically three options
1. Delegate to OS

2. Rely on middleware / application server
3. Roll your own

* For (1), itis useful to know the access control
system of the OS

* For(2), see later session

Approach #1: delegate to the OS

* All modern operating system have a built-in
access control system, usually DAC based.

* |f application resources can be mapped to OS
resources, the OS access control can be reused

User command
‘ . Application
Access check _Operati$ g System

Resources

Approach #2: application servers

* Application server intercepts commands and
performs access check

* E.g. J2EE and COM+, typically simple RBAC

Access check

:

‘ User command Application
Applicgtion server

Operating System

Resources

Approach #3: in the application

* Application performs explicit checks in the
application code

* |t makes sense to externalize at least the policy

to an authorization engine
Access checks

crosscut application
User command
. 4_'

Operating System

Resources

OS Access Control

* |n the rest of this session:

— Helicopter overview of the Windows security
architecture

— Access control system in Windows 2000/XP

— A brief look at Windows Vista's implementation of the
Biba Model.

Windows 2000/XP Access Control

* Principals are users or machines

— |dentified by Security |dentifiers (SID)’s
* E.g. S-1-5-21-XXX-XXX-XXX-1001
* Hierarchical and globally unique
* Authorities manage principals and their
credentials

— Local Security Authority on each PC
— Domain controller is authority for a domain

* Flexible mechanisms for slowly growing

Windows 2000/XP Access Control

* Trust between authorities
— Machine that is part of a domain trusts the domain
— Domains can establish trust links

* Authentication
— Via local password check on a standalone machine
* Customizable via GINA

— Via Kerberos or NTLM on a machine that is part of a
domain

* Customizable via SSPI

Windows 2000/XP Access Control

* Successful authentication leads to the creation
of a logon session

— Different types of logon sessions, e.g.
* Interactive logon session, for a user that logs on locally
* Network logon session, for a user that logs on remotely

* Service logon session, for a service running as a given
user

— Logon session gets an access token that contains all
authorization attributes for the user

* Processes and threads created in the logon
session by default inherit the access token

Machines and logon sessions

Machine A Machine B

Windows 2000/XP Access Control

* Securable objects include:

— files, devices, registry keys, shared memory
sections, ...

* Every securable object carries a security
descriptor, including a.0. an ACL.

Windows 2000/XP Access tokens

* Contain:
— SID for the user

— SID’s for the groups a user belongs to
* Defined by the authority (typically domain)
* Should reflect organizational structure

— SID’s for the local groups (aliases) a user belongs to
* Defined locally
* Should reflect logical roles of applications on this machine

— Privileges of the user, e.g.
* Shutdown machine
* Take ownership privilege (e.g. for Administrators)

Win 2000/XP security descriptors

* Contain:
— Owner SID
— (Primary group SID)

— DACL (Discretionary ACL): the ACL used for access
control

— SACL (System ACL): ACL specifying what should be
audited

* Created at object creation time from a default
template attached to the creating process

Windows 2000/XP DACL'’s

* A DACL contains a sorted list of access control
entries

* Each access control entry denies or grants
specific access rights to a group or user

* Access control entries that deny access should
be placed in front of the list

Windows 2000/XP access control

* The kernel performs access checks for each
securable object by:

— lterating over the access control entry in the DACL of
the object

— Each access control entry is matched to the access
token of the accessing thread

— The first match decides (hence deny entries should
be before allow entries!)

Win 2000/XP access control
{ Object }1—@—(Thread A jj

¥. ACCEEs
Nenied
DACL Access Token
Johnson
Arcess - Denied Graup &
A?E Johns=on grnup E
Read 'Wiite, Execute roup
|
Access - Allowed -~
AgE Sroup &, \ Thread B j)
rite
I
Arcess - Allowed Access Token
AEE SUEEE Jdane
Fead, E xecute Sroup A

(Example from MSDN Library documentation)

Caching mechanisms

* Extensive caching is used to boost performance
— Access token caches authorization attributes

— Once a file is opened, the file handle is used as a
capability, and no further access checks occur

* Such a handle can be passed to other users

* Hence policy changes are not effective
immediate if the affected user is currently logged

on

Access control in applications

* Impersonation:

— Server authenticates client, and puts access token
on the thread servicing the request

* Role-based

— Look for a local group SID corresponding to a role in
the client access token

— COM+ provides extensive support for this approach
* Object-based

— Use an API for managing ACL's yourself

Running Least Privilege

* The OS Access Control system can also be
used to “sandbox” applications to protect
against:

— Exploits of server programs
— Trojans / viruses / bugs in any application

* Writing software to run in low-privileged
accounts requires attention to:
— What secured objects the application accesses
— What privileged API’s the application uses

Win 2000/XP access control

* Summary:

— Access control based on:
* Discretionary ACL's
* Privileges (safer than Unix root level access)

— Protected operations depend on the type of object

— Access control only performed during “opening” of an
object. If access is granted, the opening process
gets a capability for the requested access rights

— RBAC can be simulated using local groups, but:

* No sessions with limited activation of roles

* Permissions associated with a role are spread over ACL’s

Windows Vista's Integrity Protection

* Windows Vista adds a lattice-based access
control model

— But used for integrity control (as the Biba model)
* Securable objects get an integrity level

— representing how important their integrity is
* Access Tokens get an integrity level

— Representing how “contaminated” they are

* Three levels are distinguished:
— High (admin), medium (user), low (untrusted)

Overview

Introduction: Lampson’s model for access
control

* Classical Access Control Models
— Discretionary Access Control (DAC)
— Mandatory Access Control (MAC)
— Role-Based Access Control (RBAC)
— Other Access Control Models

* Access Control in Windows 2000/XP/Vista
* Conclusion

Conclusion

* Most access control mechanisms implement the
Lampson model
— Principal — Action —Guard — Protected system

* Three important categories of access control
policy models each have their own area of

applicability

— DAC in operating systems
— RBAC in applications and databases
— LBAC starting to find its use for integrity protection

