
1KATHOLIEKE
UNIVERSITEIT
LEUVEN

Secappdev 2007

Access control

Frank Piessens (Frank.Piessens@cs.kuleuven.be
)

mailto:Frank.Piessens@cs.kuleuven.be

Secappdev 2007 2KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 3KATHOLIEKE
UNIVERSITEIT
LEUVEN

Access Control: introduction

• Security = prevention and detection of
unauthorized actions on information

• Two important cases:
– An attacker has access to the raw bits representing

the information
=> need for cryptographic techniques

– There is a software layer between the attacker and
the information
=> access control techniques

Secappdev 2007 4KATHOLIEKE
UNIVERSITEIT
LEUVEN

General access control model

Principal Action

G
uard

Protected
system

Authentication Authorization

Secappdev 2007 5KATHOLIEKE
UNIVERSITEIT
LEUVEN

Examples

…………

Web siteWeb serverGet pageUser

DatabaseDBMSQueryUser

FileJava Security
Manager

Open fileJava
Program

File systemOS kernelOpen fileUser

intranetFirewallPacket sendHost

Protected
system

GuardActionPrincipal

Secappdev 2007 6KATHOLIEKE
UNIVERSITEIT
LEUVEN

Entity Authentication

• Definition
– Verifying the claimed identity of an entity (usually

called principal) that the guard is interacting with
• Different cases need different solutions:

– Principal is a (human) user
– Principal is a (remote) computer
– Principal is a user working at a remote computer
– Principal is a user running a specific piece of code
– …

• See separate session on entity authentication

Secappdev 2007 7KATHOLIEKE
UNIVERSITEIT
LEUVEN

Authorization by the Guard

• Guard can have local state
– “protection state”

• Upon receipt of an action
– Decides what to do with the action

• We only consider pass/drop
• Alternatives are: modify/replace, first insert other action,…

– If necessary: updates the local state
• Modeled by means of a “security automaton”

– Set of states described by a number of typed state variables
– Transition relation described by predicates on the action and

the local state

Secappdev 2007 8KATHOLIEKE
UNIVERSITEIT
LEUVEN

Guard
• Notation:

– Actions are written as procedure invocations
– Behavior of the guard is specified by:

• Declaration of state variables
– Determine the state space

• Implementations of the action procedures
– Preconditions determine acceptability of action
– Implementation body determines state update

• Example: no network send after file read
bool hasRead = false;
void send() requires !hasRead {
 }
void read() {
 hasRead = true;
}

Secappdev 2007 9KATHOLIEKE
UNIVERSITEIT
LEUVEN

Policies and models

• Access control policy = rules that say what is
allowed and what not
– Semantics of a policy is a security automaton in a

particular state
• Access control model = “A class of policies with

similar characteristics”
– Hard to define precisely
– An access control model makes particular choices

about what is in the protection state and how actions
are treated

Secappdev 2007 10KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 11KATHOLIEKE
UNIVERSITEIT
LEUVEN

Discretionary Access Control (DAC)
• Objective = creator-controlled sharing of information
• Key Concepts

– Principals are users
– Protected system manages objects, passive entities requiring

controlled access
– Objects are accessed by means of operations on them
– Every object has an owner
– Owner can grant right to use operations to other users

• Variants:
– Possible to pass on ownership or not?
– Possible to delegate right to grant access or not?
– Constraints on revocation of rights.

Secappdev 2007 12KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for DAC
type Right = <User, Obj, {read, write}>;
Set<User> users = new Set();
Set<Obj> objects = new Set();
Set<Right> rights = new Set(); // represents the Access Control Matrix
Map<Obj,User> ownerOf = new Map();

// Access checks
void read(User u, Obj o) requires <u,o, read> in rights; {}
void write(User u, Obj o) requires <u,o,write> in rights; {}

// Actions that impact the protection state
void addRight(User u, Right <u’,o,r>)
 requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {
 rights[r] = true;
}
void deleteRight(User u, Right <u’,o,r>)
 requires (u in users) && (u’ in users) && (o in objects) && ownerOf[o] == u; {
 rights[r] = true;
}

Secappdev 2007 13KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for DAC (ctd)
void addObject(User u, Obj o)
 requires (u in users) && (o notin objects); {
 objects[o] = true;
 ownerOf[o] = u;
}
void delObject(User u, Obj o)
 requires (o in objects) && (ownerOf[o] == u); {
 objects[o] = false;
 ownerOf[o] = none;
 rights = rights \ { <u’,o’,r’> in rights where o’==o};
}

// Administrative functions
void addUser(User u, User u’) requires u’ notin users; {
 users[u’] = true;
}

Secappdev 2007 14KATHOLIEKE
UNIVERSITEIT
LEUVEN

DAC

• Disadvantages:
– Cumbersome administration

• E.g user leaving the company or user being promoted to
another function in the company

– Not so secure:
• Social engineering
• Trojan horse problem

Secappdev 2007 15KATHOLIEKE
UNIVERSITEIT
LEUVEN

DAC Extensions

• Structuring users:
– Groups
– Negative permissions
– But: insufficient to make administration much easier

• Structuring operations:
– “access modes”: observe / alter / …
– Procedures: business procedure involving many

operations on many objects

Secappdev 2007 16KATHOLIEKE
UNIVERSITEIT
LEUVEN

Implementation structures

• DAC is typically not implemented with a
centralized protection state

• Typical implementation structures include:
– Access Control List: e.g. ACL’s in Windows 2000
– Capabilities: e.g. Open file handles in Unix
– ...

Secappdev 2007 17KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 18KATHOLIEKE
UNIVERSITEIT
LEUVEN

Mandatory Access Control (MAC)

• Objective = strict control of information flow
• Concrete example MAC model: Lattice Based

Access Control (LBAC)
• Objective =

– A lattice of security labels is given
– Objects and users are tagged with security labels
– Enforce that:

• Users can only see information below their clearance
• Information can only flow upward, even in the presence of

Trojan Horses

Secappdev 2007 19KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example lattices
Top secret

Secret

Confidential

Unclassified Unclassified

Confidential
Project A

Confidential
Project B

Confidential
Project A & B

Secappdev 2007 20KATHOLIEKE
UNIVERSITEIT
LEUVEN

Typical construction of lattice

• Security label = (level, compartment)
• Compartment = set of categories
• Category = keyword relating to a project or area

of interest
• Levels are ordered linearly

– E.g. Top Secret – Secret – Confidential –
Unclassified

• Compartments are ordered by subset inclusion

Secappdev 2007 21KATHOLIEKE
UNIVERSITEIT
LEUVEN

Example lattice

(C,{})

(C,{A}) (C,{B})

(C,{A,B})

(S,{})

(S,{A}) (S,{B})

(S,{A,B})

Secappdev 2007 22KATHOLIEKE
UNIVERSITEIT
LEUVEN

LBAC

• Key concepts of the model:
– Users initiate subjects or sessions, and these are

labeled on creation
– Users of clearance L can start subjects with any

label L’ ≤ L
– Enforced rules:

• Simple security property: subjects with label L can only
read objects with label L’ ≤ L (no read up)

• *-property: subjects with label L can only write objects with
label L’ ≥ L (no write down)

– The *-property addresses the Trojan Horse problem

Secappdev 2007 23KATHOLIEKE
UNIVERSITEIT
LEUVEN

LBAC and the Trojan Horse problem

File F

File F’

S1

S2

Secret level

Confidential level

read

no write

write

no read

Secappdev 2007 24KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for LBAC
// Stable part of the protection state
Set<User> users;
Map<User,Label> ulabel; // label of users

//Dynamic part of the protection state
Set<Obj> objects = new Set();
Set<Session> sessions = new Set();
Map<Session, Label> slabel = new Map(); // label of sessions
Map<Obj,Label> olabel = new Map(); // label of objects

// No read up
void read(Session s, Obj o)
 requires s in sessions && o in objects && slabel[s] >= olabel[o]; {}

// No write down
void write(Session s, Obj o)
 requires s in sessions && o in objects && slabel[s] <= olabel[o]; {}

Secappdev 2007 25KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for LBAC (ctd)

// Managing sessions and objects
void createSession(User u, Label l)
 requires (u in users) && ulabel[u] >= l ; {
 s = new Session();
 sessions[s] = true;
 slabel[s] = l;
}

void addObject(Session s, Obj o, Label l)
 requires (s in sessions) && (o notin objects) && slabel[s] <= l; {
 objects[o] = true;
 olabel[o] = l;
}

Secappdev 2007 26KATHOLIEKE
UNIVERSITEIT
LEUVEN

LBAC

• Problems and disadvantages
– Too rigid => need for “trusted subjects”
– Not well suited for commercial environments
– Covert channel problems

Secappdev 2007 27KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 28KATHOLIEKE
UNIVERSITEIT
LEUVEN

Role-Based Access Control (RBAC)

• Main objective: manageable access control
• Key concepts of the model:

– Role:
• many-to-many relation between users and permissions
• Corresponds to a well-defined job or responsibility
• Think of it as a named set of permissions that can be

assigned to users
– When a user starts a session, he can activate some

or all of his roles
– A session has all the permissions associated with

the activated roles

Secappdev 2007 29KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for RBAC
// stable part of the protection state
Set<User> users;
Set<Role> roles;
Set<Permission> perms;
Map<User, Set<Role>> ua; // set of roles assigned to each user
Map<Role, Set<Permission>> pa; // permissions assigned to each role

// dynamic part of the protection state
Set<Session> sessions;
Map<Session,Set<Role>> session_roles;
Map<User,Set<Session>> user_sessions;

// access check
void checkAccess(Session s, Permission p)
 requires s in sessions && Exists{ r in session_roles[s]; p in pa[r]}; {
}

Secappdev 2007 30KATHOLIEKE
UNIVERSITEIT
LEUVEN

Security automaton for RBAC (ctd)

void createSession(User u, Set<Role> rs)
 requires (u in users) && rs < ua[u]; {
 Session s = new Session();
 sessions[s] = true;
 session_roles[s] = rs;
 user_sessions[u][s] = true;
}

void dropRole(User u, Session s, Role r)
 requires (u in users) && (s in user_sessions[u])

&& (r in session_roles[s]); {
 session_roles[s][r] = false;
}

Secappdev 2007 31KATHOLIEKE
UNIVERSITEIT
LEUVEN

RBAC - Extensions

• Hierarchical roles: senior role inherits all
permissions from junior role

Engineering Dept.

Project A Eng Project B Eng

Director of Eng Dept

Secappdev 2007 32KATHOLIEKE
UNIVERSITEIT
LEUVEN

RBAC - Extensions

• Constraints:
– Static constraints

• Constraints on the assignment of users to roles
• E.g. Static separation of duty: nobody can both:

– Order goods
– Approve payment

– Dynamic constraints
• Constraints on the simultaneous activation of roles
• E.g. to enforce least privilege

Secappdev 2007 33KATHOLIEKE
UNIVERSITEIT
LEUVEN

RBAC in practice

• Implemented in databases or into specific
applications

• Can be “simulated” in operating systems using
the group concept

• Implemented in a generic way in application
servers

Secappdev 2007 34KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 35KATHOLIEKE
UNIVERSITEIT
LEUVEN

Other Access Control Models

• Biba model: enforcing integrity by information
flow

• Chinese wall model: dynamic access control
model
– “A consultant can only see company confidential

information of one company in each potential-
conflict-of-interest class”

• Theoretical models to study theoretical limits of
security decision problems

• …

Secappdev 2007 36KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 37KATHOLIEKE
UNIVERSITEIT
LEUVEN

Implementing Access Control in
Applications

• Basically three options
1. Delegate to OS
2. Rely on middleware / application server
3. Roll your own

• For (1), it is useful to know the access control
system of the OS

• For (2), see later session

Secappdev 2007 38KATHOLIEKE
UNIVERSITEIT
LEUVEN

Approach #1: delegate to the OS

• All modern operating system have a built-in
access control system, usually DAC based.

• If application resources can be mapped to OS
resources, the OS access control can be reused

Resources

Operating System

Application
User command

Access check

Secappdev 2007 39KATHOLIEKE
UNIVERSITEIT
LEUVEN

Approach #2: application servers

• Application server intercepts commands and
performs access check

• E.g. J2EE and COM+, typically simple RBAC

Resources

Operating System

ApplicationUser command

Access check

Application server

Secappdev 2007 40KATHOLIEKE
UNIVERSITEIT
LEUVEN

Approach #3: in the application

• Application performs explicit checks in the
application code

• It makes sense to externalize at least the policy
to an authorization engine

Resources

Operating System

Application
User command

Access checks
crosscut application

Authorization
Engine

Policy

Secappdev 2007 41KATHOLIEKE
UNIVERSITEIT
LEUVEN

OS Access Control

• In the rest of this session:
– Helicopter overview of the Windows security

architecture
– Access control system in Windows 2000/XP
– A brief look at Windows Vista’s implementation of the

Biba Model.

Secappdev 2007 42KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP Access Control

• Principals are users or machines
– Identified by Security Identifiers (SID)’s

• E.g. S-1-5-21-XXX-XXX-XXX-1001
• Hierarchical and globally unique

• Authorities manage principals and their
credentials
– Local Security Authority on each PC
– Domain controller is authority for a domain

• Flexible mechanisms for slowly growing

Secappdev 2007 43KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP Access Control

• Trust between authorities
– Machine that is part of a domain trusts the domain
– Domains can establish trust links

• Authentication
– Via local password check on a standalone machine

• Customizable via GINA
– Via Kerberos or NTLM on a machine that is part of a

domain
• Customizable via SSPI

Secappdev 2007 44KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP Access Control

• Successful authentication leads to the creation
of a logon session
– Different types of logon sessions, e.g.

• Interactive logon session, for a user that logs on locally
• Network logon session, for a user that logs on remotely
• Service logon session, for a service running as a given

user
– Logon session gets an access token that contains all

authorization attributes for the user
• Processes and threads created in the logon

session by default inherit the access token

Secappdev 2007 45KATHOLIEKE
UNIVERSITEIT
LEUVEN

Machines and logon sessions

Machine A

System LS

Alice’s interactive LS

Bob’s network LS

Alice

…

Machine B

System LS

Bob’s interactive LS

Service LS

Bob

…

Secappdev 2007 46KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP Access Control

• Securable objects include:
– files, devices, registry keys, shared memory

sections, …
• Every securable object carries a security

descriptor, including a.o. an ACL.

Secappdev 2007 47KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP Access tokens

• Contain:
– SID for the user
– SID’s for the groups a user belongs to

• Defined by the authority (typically domain)
• Should reflect organizational structure

– SID’s for the local groups (aliases) a user belongs to
• Defined locally
• Should reflect logical roles of applications on this machine

– Privileges of the user, e.g.
• Shutdown machine
• Take ownership privilege (e.g. for Administrators)

Secappdev 2007 48KATHOLIEKE
UNIVERSITEIT
LEUVEN

Win 2000/XP security descriptors

• Contain:
– Owner SID
– (Primary group SID)
– DACL (Discretionary ACL): the ACL used for access

control
– SACL (System ACL): ACL specifying what should be

audited
• Created at object creation time from a default

template attached to the creating process

Secappdev 2007 49KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP DACL’s

• A DACL contains a sorted list of access control
entries

• Each access control entry denies or grants
specific access rights to a group or user

• Access control entries that deny access should
be placed in front of the list

Deny
User x

Read/Write

Allow
Group g

Read/Write

Allow
Group Everyone

Read

Secappdev 2007 50KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows 2000/XP access control

• The kernel performs access checks for each
securable object by:
– Iterating over the access control entry in the DACL of

the object
– Each access control entry is matched to the access

token of the accessing thread
– The first match decides (hence deny entries should

be before allow entries!)

Secappdev 2007 51KATHOLIEKE
UNIVERSITEIT
LEUVEN

Win 2000/XP access control

(Example from MSDN Library documentation)

Secappdev 2007 52KATHOLIEKE
UNIVERSITEIT
LEUVEN

Caching mechanisms

• Extensive caching is used to boost performance
– Access token caches authorization attributes
– Once a file is opened, the file handle is used as a

capability, and no further access checks occur
• Such a handle can be passed to other users

• Hence policy changes are not effective
immediate if the affected user is currently logged
on

Secappdev 2007 53KATHOLIEKE
UNIVERSITEIT
LEUVEN

Access control in applications

• Impersonation:
– Server authenticates client, and puts access token

on the thread servicing the request
• Role-based

– Look for a local group SID corresponding to a role in
the client access token

– COM+ provides extensive support for this approach
• Object-based

– Use an API for managing ACL’s yourself

Secappdev 2007 54KATHOLIEKE
UNIVERSITEIT
LEUVEN

Running Least Privilege

• The OS Access Control system can also be
used to “sandbox” applications to protect
against:
– Exploits of server programs
– Trojans / viruses / bugs in any application

• Writing software to run in low-privileged
accounts requires attention to:
– What secured objects the application accesses
– What privileged API’s the application uses

Secappdev 2007 55KATHOLIEKE
UNIVERSITEIT
LEUVEN

Win 2000/XP access control

• Summary:
– Access control based on:

• Discretionary ACL’s
• Privileges (safer than Unix root level access)

– Protected operations depend on the type of object
– Access control only performed during “opening” of an

object. If access is granted, the opening process
gets a capability for the requested access rights

– RBAC can be simulated using local groups, but:
• No sessions with limited activation of roles
• Permissions associated with a role are spread over ACL’s

Secappdev 2007 56KATHOLIEKE
UNIVERSITEIT
LEUVEN

Windows Vista’s Integrity Protection

• Windows Vista adds a lattice-based access
control model
– But used for integrity control (as the Biba model)

• Securable objects get an integrity level
– representing how important their integrity is

• Access Tokens get an integrity level
– Representing how “contaminated” they are

• Three levels are distinguished:
– High (admin), medium (user), low (untrusted)

Secappdev 2007 57KATHOLIEKE
UNIVERSITEIT
LEUVEN

Overview

• Introduction: Lampson’s model for access
control

• Classical Access Control Models
– Discretionary Access Control (DAC)
– Mandatory Access Control (MAC)
– Role-Based Access Control (RBAC)
– Other Access Control Models

• Access Control in Windows 2000/XP/Vista
• Conclusion

Secappdev 2007 58KATHOLIEKE
UNIVERSITEIT
LEUVEN

Conclusion

• Most access control mechanisms implement the
Lampson model
– Principal – Action –Guard – Protected system

• Three important categories of access control
policy models each have their own area of
applicability
– DAC in operating systems
– RBAC in applications and databases
– LBAC starting to find its use for integrity protection

